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ABSTRACT: Three series of isothermal torsion relaxation
tests were performed at various temperatures ranging from
room temperature to T � 120°C on isotactic polypropylene,
low-density polyethylene, and linear low-density polyethyl-
ene. Constitutive equations are derived for the viscoelastic
behavior of a semicrystalline polymer at small strains. A
polymer is treated as an equivalent network of strands
bridged by temporary junctions (entanglements, physical
crosslinks on the surfaces of crystallites, and lamellar
blocks). The network is thought of as an ensemble of me-
soregions with various activation energies for detachment of
active strands from their junctions. The time-dependent re-
sponse of the ensemble reflects thermally induced rear-

rangement of strands (separation of active strands from
temporary junctions and merging of dangling strands with
the network). Stress–strain relations are developed by using
the laws of thermodynamics. The governing equations in-
volve five adjustable parameters that are found by fitting the
experimental data. This study focuses on the influence of
temperature and crystalline morphology of polyolefins on
the material parameters in the constitutive relations. © 2004
Wiley Periodicals, Inc. J Appl Polym Sci 94: 9–23, 2004

Key words: polyethylene; polypropylene; viscoelastic prop-
erties; thermal properties

INTRODUCTION

This article is concerned with the effect of temperature
on the viscoelastic behavior of semicrystalline poly-
mers at isothermal deformations with small strains.
The experimental part focuses on the time-dependent
response of injection-molded isotactic polypropylene
(iPP), low-density polyethylene (LDPE), and linear
low-density polyethylene (LLDPE) in torsion relax-
ation tests. The choice of these polymers for the inves-
tigation is explained by (1) their numerous industrial
applications (oriented films for packaging, reinforcing
fibers, nonwoven fabrics, pipes, wire coatings, fuel
tanks, etc.), and (2) variety of crystalline morphologies
(ranging from monoclinic spherulites in iPP to ortho-
rhombic structures in LDPE and LLDPE) and molec-
ular architectures in the amorphous phase (ranging
from highly branched chains in LDPE to linear chains
with relatively short branches in LLDPE) that notice-
ably affect their mechanical and physical properties.

Isotactic polypropylene is a semicrystalline polymer
containing the three following crystallographic forms:

monoclinic � crystallites, hexagonal � structures, or-
thorhombic � polymorphs, and smectic mesophase.1

At cooling of the melt with the rates typical of the
injection-molding process, � crystallites and smectic
mesophase are mainly developed, whereas � and �
polymorphs are observed as minority components.2,3

A unique feature of the crystalline morphology of iPP
is the lamellar cross-hatching: development of trans-
verse lamellae oriented in the direction perpendicular
to the direction of radial lamellae.1,4 The characteristic
size of spherulites in injection-molded specimens is
estimated as 100–200 �m.2,5 The spherulites consist of
crystalline lamellae with thicknesses of 10–20 nm.4,5

Polyethylene reveals three different crystallo-
graphic forms: monoclinic, hexagonal, and ortho-
rhombic. Monoclinic and hexagonal structures are
produced by polymerization under high pressure
(over 400 MPa) and high temperature only,6,7 whereas
in injection-molded samples, orthorhombic structures
are mainly formed.

Linear chains in LDPE have a large number of long
side branches that prevent macromolecules from
packing closely in crystallites and result in a wide
distribution of sizes of spherulites. The average radius
of spherulites equals 3–12 �m.8 The spherulites are
formed by lamellae stacks with lamellar thicknesses
ranging from 8 to 12 nm.9 There data were confirmed
in [10], where an average lamellar thickness of 11.5 nm
was found, but were argued in [11], where an average
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thickness of 6.5 nm was reported. The average size of
lamellae and their curvature, as well as the type of
their organization into spherulites, are strongly af-
fected by crystallization conditions, molecular weight,
and degree of chain branching.12

LLDPE is a random copolymer produced by poly-
merization of ethylene in the presence of alkenes
(butene, octene, octadecene, hexene, etc.). The average
distance between short branches along the main chain
is about 7 nm.12 This value perfectly agrees with the
average segment length found in [13] for metallocene-
catalyzed LLDPE (under the assumptions that
sidechains are segregated from crystallites, and only a
small amount of them may be included into crystal-
lites as defects6). The histograms reported in [13] re-
veal a wide distribution of segment lengths, with a
relatively high probability of segments ranging up to
30 nm (which, in turn, implies a wide distribution of
lamellar thicknesses in LLDPE). The average radius of
crystallites is strongly affected by the content of short-
chain branches (composed mainly of butyl side groups
with minor amounts of ethyl, methyl, and hexyl side
groups12), and it changes from 2.5 to 12 �m depending
on the crystallization conditions.8 The average lamel-
lar thickness ranges from 8.5 to 10 nm.8

In semicrystalline polymers, the amorphous phase
is located (1) between spherulites, (2) inside spheru-
lites in liquid pockets between lamellar stacks,14 and
(3) between lamellae in lamellar stacks. It consists of
(1) relatively mobile chains between spherulites and in
liquid pockets, and (2) severely restricted chains be-
tween lamellae in lamellar stacks (the so-called re-
strained chains15 or rigid amorphous fraction14: part of
the amorphous phase whose molecular mobility is
substantially suppressed by surrounding crystallites).

In the past decade, the viscoelastic response of iso-
tactic polypropylene has been investigated in [16–18,
20–23], to mention a few. The time-dependent behav-
ior of polyethylene was analyzed in [24–35]. Although
viscoelasticity of solid polyolefins was investigated in
a number of publications, a comparative study of the
influence of temperature on the time-dependent re-
sponse of polyethylene and polypropylene has not yet
been performed.

The objective of this work is twofold:

1. To report experimental data in uniaxial torsion
relaxation tests on isotactic polypropylene, LDPE
and LLDPE in the interval of temperatures from
30 to 120°C.

2. To derive constitutive equations for the vis-
coelastic response of semicrystalline polymers
and to determine adjustable parameters in the
stress–strain relations by fitting the observations.

Our purpose is to assess the effect of temperature on
the time-dependent behavior of semicrystalline poly-

mers in terms of the model parameters and to estab-
lish correlations between their crystalline morphology
and the mechanical response.

To develop a constitutive model with a relatively
small number of material constants, we applied a
method of homogenization.36 According to this ap-
proach, a sophisticated microstructure of a semicrys-
talline polymer is replaced by a single phase, whose
response captures essential features of the time-de-
pendent behavior of the polymer. Following [20, 22,
37, 38], we treat the equivalent phase as a network of
macromolecules connected by temporary junctions
(entanglements, physical crosslinks on the surfaces of
crystallites, and fringed micellar crystals serving as
the multifunctional junctions37).

To simplify the derivation of stress–strain relations,
we assume the network to be incompressible. This
hypothesis is confirmed by experimental data,39 which
show that LLDPE is practically incompressible under
tension with the elongation ratios up to 2.5.

With reference to the theory of transient net-
works,40–43 the viscoelastic response of a semicrystal-
line polymer is associated with separation of active
strands from temporary junctions and merging of
dangling strands with the network. Rearrangment of
strands in the network is thought of as a thermally
activated process: an end of an active strand detaches
from a junction and a free end of a dangling strand
captures a nearby junction at random instants, when
these strands are thermally activated.

The network is assumed to be strongly heteroge-
neous. Its spatial inhomogeneity is attributed to inter-
actions between amorphous regions and crystalline
lamellae with various lengths and thicknesses, as well
as to local density fluctuations in the amorphous
phase. The equivalent network is treated as an ensem-
ble of mesoregions (MRs) with various activation en-
ergies for detachment of active strands from their
junctions. Following [44], the following two types of
MRs are distinguished: (1) active domains, where
strands separate from their junctions as they are ther-
mally agitated (these MRs are associated with a mo-
bile part of the amorphous phase), and (2) passive
domains, where detachment of strands from their
junctions is prevented (these MRs reflect the response
of a part of the amorphous phase whose mobility is
severely restricted by surrounding crystallites).

The exposition is organized as follows. We begin
with reporting the experimental data in torsional re-
laxation tests. Afterwards, stress–strain relations are
developed for an arbitrary three-dimensional defor-
mation of a semicrystalline polymer. The constitutive
equations are simplified for torsion of a cylinder and
plane bending of a beam, the deformation modes that
correspond to torsional relaxation tests and bending
creep tests. Adjustable parameters in the governing
equations are found by fitting the observations in

10 DROZDOV, AGARWAL, AND GUPTA



relaxation tests. After a brief discussion of our finding,
the governing equations are verified by comparison of
experimental data in bending creep tests with results
of numerical simulation. Finally, some concluding re-
marks are formulated.

EXPERIMENTAL

Isotactic polypropylene PP 1012 (density, 0.906 g/cm3;
melt flow rate, 1.2 g/10 min) was purchased from BP
Amoco Polymers, Inc. (Alpharetta, GA) LDPE PE 1020
(density, 0.923 g/cm3; melt flow rate, 2.0 g/10 min)
was purchased from Huntsman Corp. (Salt Lake City,
UT). LLDPE Petrothene GA 584 (density, 0.929 g/cm3;
melt flow rate, 105 g/10 min) was supplied by Equi-
star Chemicals (Columbus, OH).

Granules were dried at the temperature T � 100°C
for 12 h before molding. ASTM specimens for mechan-
ical tests with length of 45.5 mm, width of 13.0 mm,
and thickness of 3.0 mm were molded in an injection-
molding machine (Battenfeld 1000/315 CDC, Batten-
feld).

To evaluate the degree of crystallinity �c, differential
scanning calorimetry (DSC) measurements were per-
formed by using DSC 910S apparatus (TA Instru-
ments). The calorimeter was calibrated with indium as
a standard. Specimens with weights in the range from
13 to 26 mg were tested with a heating rate of 10
K/min from room temperature to 200°C. The DSC
traces of three polymers are depicted in Figure 1. The
graphs are similar to those reported by other research-
ers for LDPE and LLDPE,11,27 and iPP.1,45,46 The melt-
ing temperatures Tm were determined as the points
corresponding to the peaks on melting curves. The
specific enthalpy of melting �Hm was calculated from
the areas of endotherms by using a standard proce-
dure. The degree of crystallinity was determined as
the ratio of the enthalpy of melting to the enthalpy of
fusion for a perfectly crystalline polymer (209 J/g for

polypropylene and 293 J/g for polyethylene47). Our
findings are listed in Table I.

To analyze the crystalline morphology of polymer,
X-ray diffraction tests were performed on bulk sam-
ples by using Rugaku D-max B diffractometer with
CuK� radiation (� � 1.54 Å) generated by a tube with
a voltage of 40 kV and a current of 30 mA. The Bragg
scattering angle ranged from 2� � 3 to 2� � 40° with
the step of 0.06°. The diffraction spectra of LDPE and
LLDPE are analogous to those previously reported in
the literature,48,49 and we do not present them for the
sake of brevity. The WAXS profiles of polyethylenes
reveal only two peaks: an orthorhombic (110) peak
near 2� � 21°, and a triclinic peak (200) near 2� � 24°.
The X-ray diffraction pattern of iPP depicted in Figure
2 is also similar to conventional WAXS diagrams. The
only difference is that we observed a rather narrow
�(300) peak. This peak was absent in the diagrams
presented in [1, 46], but it was reported in [50, 51], to
mention a few.

Relaxation tests were performed by using rheomet-
ric scientific mechanical spectrometer RMS-800 in rect-
angular torsion mode. To avoid the effect of physical
aging, mechanical tests were carried out a few days
after preparation of samples.

The series of relaxation experiments on iPP con-
sisted of 10 tests at the temperatures T � 30, 40, 50, 60,
70, 80, 90, 100, 110, and 120°C. The series of experi-
ments on LDPE consisted of eight tests at the temper-
atures T � 30, 40, 50, 60, 70, 80, 90, and 100°C. The
series of experiments on LLDPE consisted of nine tests

Figure 1 The exothermic heat flow � versus temperature T.
Symbols: observations on LDPE (thick line), LLDPE (thin
line), and iPP (asterisks).

TABLE I
Melting Temperatures Tm and Degrees of Crystallinity

�c of Semicrystalline Polymers

Polymer Tm (°C) �c (%)

iPP 172.1 44.3
LDPE 113.2 19.4
LLDPE 130.8 34.2

Figure 2 X-ray diffraction patterns of iPP: intensity I (in 103

of counts) versus the Bragg angle 2�.
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at the temperatures T � 30, 40, 50, 60, 70, 80, 90, 100,
and 110°C. All tests were performed below the melt-
ing temperatures of the polymers under consider-
ation. In the relaxation tests, the temperature in the
chamber was controlled with a standard thermocou-
ple. It was found that the temperature remained con-
stant within the accuracy of �0.5°C.

In each relaxation test, a specimen was equilibrated
at a given temperature T (for 10 min). Afterwards, the
specimen was loaded up to a given twist angle �0

� 5.0 � 10�4 rad for iPP and �0 � 1.0 � 10�3 rad for
LDPE and LLDPE within 4 s. The twist angle was
preserved constant during the relaxation time tr � 40
min, and the torque was measured by using a stan-
dard load cell. The shear stress 	 was determined as
the ratio of the torque multiplied by the length of the
specimen to its cross-sectional moment of inertia, see
eq. (22) below. At each temperature T, at least two
relaxation tests were carried out on different samples.

The shear stress 	 is plotted versus the logarithm
(log � log10) of time t in Figure 3 for iPP, in Figure 4
for LDPE, and in Figure 5 for LLDPE. The initial
instant t � 0 corresponds to the beginning of the
relaxation process. These figures demonstrate that the
decrease in stress is rather pronounced at relatively
low temperatures (30 and 40°C), but it becomes less
substantial when the temperature T increases. At high
temperatures (above 100°C), the relaxation curves are
practically parallel to the abscissa axis.

Our aim now is to derive constitutive equations that
adequately describe the experimental data depicted in
Figures 3–5.

CONSTITUTIVE EQUATIONS

A semicrystalline polymer is treated as a transient
network of strands bridged by temporary junctions
(entanglements between chains in the amorphous re-

gions, physical crosslinks at the surfaces of crystallites,
and lamellar blocks).

The time-dependent behavior of a semicrystalline
polymer is modeled within the concept of transient
networks. Active strands (whose ends are connected
to contiguous junctions) are assumed to separate from
temporary junctions at random times when these
strands are thermally activated. An active strand
whose end detaches from a junction is transformed
into a dangling strand. A dangling strand returns into
the active state when its free end captures a nearby
junction at a random instant.

Detachment of active strands from their junctions
and merging of dangling strands with the network are
thought of as thermally activated processes. Separa-
tion of an active strand from a junction is determined
by its activation energy v. With reference to [52], we
suppose that for an active strand with activation en-
ergy v, the probability q(v) for its transition into the

Figure 3 The stress 	 versus time t. Circles: experimental
data on iPP in relaxation tests at the temperatures T � 30, 40,
50, 60, 70, 80, 90, 100, 110, and 120°C, from top to bottom,
respectively. Solid lines: results of numerical simulation.

Figure 4 The stress 	 versus time t. Circles: experimental
data on LDPE in relaxation tests at the temperatures T � 30,
40, 50, 60, 70, 80, 90, and 100°C, from top to bottom, respec-
tively. Solid lines: results of numerical simulation.

Figure 5 The stress 	 versus time t. Circles: experimental
data on LLDPE in relaxation tests at the temperatures T
� 30, 40, 50, 60, 70, 80, 90, 100, and 110°C, from top to
bottom, respectively. Solid lines: results of numerical simu-
lation.
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dangling state is described by the exponential statis-
tics

q�v� 
 exp���v� �v � 0�, q�v� 
 0 �v � 0� (1)

where � is a material constant, which is assumed to be
independent of temperature T.

� is the attempt rate (the average number of activa-
tion events for an active strand per unit time). The rate
of detachment 	 is defined as the product of the at-
tempt rate � by the probability of transition into the
dangling state driven by thermal fluctuations. It fol-
lows from eq. (1) that for any v � 0,

	�v� 
 � exp���v�

Without loss of generality, we set � � 1 in this equal-
ity, which implies that the activation energies of
strands are measured in units of ��1,

	�v� 
 � exp��v� �v � 0� (2)

An equivalent network of strands is modeled as an
ensemble of mesoregions with various activation en-
ergies for detachment of active strands from their
junctions. Two types of mesoregions are distin-
guished: passive and active. In passive MRs, inter-
chain interaction prevents detachment of strands from
the network, which implies that all junctions in these
domains are permanent. In active MRs, active strands
separate from temporary junctions and dangling
strands merge with the network at random times.

Na is the number of active strands in active MRs; Np

is the number of strands connected to the network in
passive MRs, and

N 
 Na 
 Np (3)

the average number of active strands per unit mass of
a polymer. The ensemble of mesoregions with various
activation energies v is characterized by the concen-
tration of active MRs

� 

Na

N (4)

and the distribution function pa(v) for active strands in
active MRs with various activation energies. The
quantity pa(v) equals the ratio of the number �a(v) of
active strands in active mesodomains with energy v to
the total number active strands Na,

pa�v� 

�a�v�

Na
(5)

At small deformations, the total number of active
strands N, the concentration of active mesodomains �,
and the distribution function pa(v) are independent of
mechanical factors, but they are strongly affected by
temperature T.

In what follows, constitutive equations will be de-
rived for an arbitrary distribution function pa(v). To fit
experimental data, we adopt the random energy
model53 with the quasi-Gaussian distribution function

pa�v� 
 p0exp��
�v � V�2

2
2 � �v � 0�,

p�v� 
 0 �v � 0� (6)

where V is an analog of the average energy for rear-
rangement of strands, 
 is an analog of the standard
deviation of activation energies, and the coefficient p0
is determined from the condition

�
0

�

pa�v� dv 
 1 (7)

An ensemble of active mesodomains is character-
ized by the function na(t, �, v) that equals the number
(per unit mass) of active strands at time t � 0 belong-
ing to active MRs with activation energy v that have
last rearranged before instant � � [0, t]. In particular,
na(t, t, v) is the number (per unit mass) of active
strands in active MRs with potential energy v at time
t � 0,

na�t, t, v� 
 �a�v� (8)

The amount �(�, v)d�, where

���, v� 

�na

��
�t, �, v��t�� (9)

equals the number (per unit mass) of dangling strands
in active MRs with activation energy v that merge with
the network within the interval [�, � � d�], and the
quantity

�na

��
�t, �, v� d�

is the number of these strands that have not detached
from their junctions during the interval [�, t]. The
number (per unit mass) of strands in active MRs that
separate (for the first time) from the network within
the interval [t, t � dt] reads

�
�na

�t �t, 0, v� dt
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and the number (per unit mass) of strands in active
MRs that merged with the network during the interval
[�, � � d�] and, afterwards, separate from the network
within the interval [t, t � dt] is given by

�
�2na

�t��
�t, �, v� dt d�

The rate of detachment 	 equals the ratio of the
number of active strands that separate from the net-
work per unit time to the current number of active
strands. Applying this definition to active strands that
are rearranged for the first time within the interval [t,
t � dt] and to those that have been previously rear-
ranged during the interval [�, � � d�], we arrive at the
differential equations

�na

�t �t, 0, v� 
 �	�v�na�t, 0, v�,

�2na

�t��
�t, �, v� 
 �	�v�

�na

��
�t, �, v�

Integration of these equations with initial conditions
(8) (where we set t � 0) and (9) implies that

na�t, 0, v� 
 �Npa�v�exp
�	�v�t�

�na

��
�t, �, v� 
 �Npa�v�	�v�exp
�	�v��t � ��� (10)

For a detailed derivation of eqs. (10), the reader is
referred to [23].

An active strand is thought of as an incompressible
linear elastic medium with the strain energy

w 

1
2 �ê� : ê�

where � is an average rigidity per strand, ê is the
strain tensor for transition from the natural (stress-
free) state of a strand to its deformed state, and the
prime stands for the deviatoric component of a tensor.

For strands belonging to passive MRs, the stress-
free configuration coincides with the reference config-
uration of the network. This implies that the tensor ê�
equals the deviatoric component �̂� of the macrostrain
tensor �̂. Multiplying the mechanical energy of a
strand by the number of strands in passive MRs, we
find the strain energy of mesodomains where rear-
rangement of strands is prevented by surrounding
lamellae,

Wp�t� 

1
2 �Np�̂��t� : �̂��t� (11)

With reference to [43], we suppose that stress in a
dangling strand totally relaxes before the strand cap-
tures a nearby junction. This implies that the stress-
free configuration of an active strand coincides with
the deformed configuration of the network at the in-
stant when the strand attaches to the network. This
means that for active strands that have not rearranged
before instant t � 0, the strain ê� reads

ê�t, 0� 
 �̂��t�

whereas for active strands that have last rearranged
within the interval [�, � � d�], the strain ê� is given by

ê��t, �� 
 �̂��t� � �̂����

Summing the strain energies of active strands belong-
ing to mesoregions with various potential energies v
that rearranged at various instants � � [0, t], we find
the strain energy of active MRs,

Wa�t� 

1
2 � �

0

� �na�t, 0, v��̂��t� : �̂��t� 
 �
0

t �na

��

� �t, �, v���̂��t� � �̂��t�� : ��̂��t� � �̂��t�� d�� dv (12)

Neglecting the energy of interaction between strands
(this energy is taken into account in terms of the
incompressibility condition for the network), we cal-
culate the strain energy per unit mass of a semicrys-
talline polymer as the sum of the strain energies of
strands in active and passive MRs,

W�t� 
 Wa�t� 
 Wp�t�

It follows from this equality and eqs. (9)–(12) that the
derivative of the function W(t) with respect to time is
given by

dW
dt �t� 
 Â��t� :

d�̂�

dt �t� � B�t� (13)

where

Â�t� 
 ��N�̂�t� � �
0

�

dv �
0

t �na

��
�t, �, v��̂��� dt� (14)

B�t� 

1
2 � �

0

�

	�v� dv�na�t, 0, v��̂��t� : �̂��t� 
 �
0

t �na

��

� �t, �, v���̂��t� � �̂����� : ��̂��t� � ������� d�� (15)
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Equation (15) implies that the function B(t) is non-
negative: 	(v) is positive as the rate of detachment of
strands from temporary junctions, na(0, t, v) and �na/
��(t, �, v) are nonnegative as concentrations of active
strands in mesoregions with various activation ener-
gies, whereas the convolution of a tensor with itself is
positive for any nonzero tensor.

For isothermal deformation of an incompressible
medium, the Clausius–Duhem inequality reads

Q�t� 
 �
dW
dt �t� 


1
�

	̂��t� :
d�̂�

dt �t� � 0

where Q is internal dissipation per unit mass, � is
density, and 	̂� is the deviatoric component of the
stress tensor 	̂. Substitution of eq. (13) into this equal-
ity implies that

�Q�t� 
 
	̂��t� � �Â��t�� :
d�̂�

dt �t� 
 �B�t� � 0 (16)

As the function B(t) is nonnegative, the dissipation
inequality (16) is satisfied for an arbitrary deformation
program, provided that the expression in square
brackets vanishes. This condition, together with eqs.
(10) and (14), results in the stress–strain relation

	̂�t� 
 �P�t�Î 
 2G��̂��t� � � �
0

�

	�v�pa�v� dv

� �
0

t

exp��	�v��t � ����̂���� d�� (17)

where P is an unknown pressure, Î is the unit tensor,
and G � 1

2 ��N is an analog of the elastic modulus. The
first term on the right-hand side of eq. (17) arises due
to the incompressibility condition.

For an arbitrary three-dimensional deformation
with small strains, the viscoelastic response of a semi-
crystalline polymer is determined by eqs. (2), (6), and
(17). These equations involve five material constants to
be found by fitting observations:

1. the modulus G,
2. the concentration of active MRs �,
3. the attempt rate for rearrangement of strands �,
4. the average activation energy for rearrangement

V,
5. the standard deviation of activation energies 
.

Our aim now is to simplify the stress–strain rela-
tions for torsion of a cylindrical specimen and bending
of a beam.

TORSION OF A CYLINDER

We begin with torsion of a cylinder driven by a torque
M(t) applied to its edges. The axial force equals zero,
and the lateral surface of the cylinder is traction-free.
In the initial state, points of the cylinder refer to cy-
lindrical coordinates {r, �, z} with unit vectors e�r, e��,
and e�z.

Torsion of a cylinder is described by the following
equations:

R 
 r, � 
 � 
 �z, Z 
 z (18)

where {R, �, Z} are cylindrical coordinates in the
deformed state, and �(t) denotes twist angle per unit
length. It follows from eq. (18) that the strain tensor �̂
reads

�̂ 

1
2 �r�e��e�z 
 e��e�z� (19)

Substitution of expression (19) into eq. (17) implies
that

	̂ 
 	�z�e��e�z 
 e��e�z�

where

	�z�t� 
 Gr���t� � � �
0

�

	�v�pa�v� dv

� �
0

t

exp��	�v��t � ������� d�� (20)

The stress tensor 	̂ satisfies the equilibrium equations
inside the cylinder and the boundary conditions on its
lateral surface. The only boundary condition on the
edges of the cylinder reads

M�t� 
 �
S

	�zr2 dr d� (21)

where S is a domain occupied by the cross section.
Combining eqs. (20) and (21), we find that

M�t� 

GJ
l ���t� � � �

0

�

	�v�pa�v� dv

� �
0

t

exp��	�v��t � ������� d��
where
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J 
 �
S

r3 dr d�

stands for moment of inertia of the cross section, l
denotes length of the cylinder, and � � �l is twist
angle. Introducing the notation

	 

Ml
J (22)

we arrive at the formula for the stress 	 as a function
of time t for an arbitrary deformation program �(t),

	�t� 
 G���t� � � �
0

�

	�v�pa�v� dv

� �
0

t

exp��	�v��t � ������� d�� (23)

For a standard relaxation test with

��t� 
 � 0, t � 0
�0, t � 0

Equation (23) reads

	�t� 
 	0 � 	1 �
0

�


1 � exp��	�v�t��pa�v� dv (24)

where

	0 
 G�0 (25)

is the stress at the beginning of the relaxation test, and

	1 
 �	0 (26)

Equations (24)–(26) will be used later to approximate
the experimental data depicted in Figures 3–5.

BENDING OF A RECTILINEAR BEAM

We proceed with plane bending of a cantilever beam
with a constant cross section that has two axes of
symmetry. Denote by l length of the beam and by b the
characteristic size of its cross-section. We confine our-
selves to deformation of slender beams with l �� b.

Points of the beam refer to Cartesian coordinates {x,
y, z} with unit vectors e�x, e�y, and e�z, where the vector e�x

is directed along the longitudinal axis of the beam,
and the vectors e�y and e�z are directed along the main
axes of symmetry of the cross section. Deformation of
the beam occurs in the plane (x, y) under the action of

a force F(t) applied to the free end, x � l, along the y
axis. The other end, x � 0, is clamped.

At plain bending of a rectilinear beam, the strain
tensor �̂ and the stress tensor 	̂ are functions of time t,
the longitudinal coordinate x, and the transverse co-
ordinate y. According to the first kinematic Kirchhoff
hypothesis, the strain tensor reads

�̂ 
 �0�t, x, y�e�xe�x (27)

where �0(t, x, y) is the longitudinal strain. Substitution
of expression (27) into the constitution eq. (17) implies
that

	̂ 
 	0�t, x, y�e�xe�x 
 	1�t, x, y��e�ye�y 
 e�ze�z�

where

	0�t, x, y� 
 �P�t, x, y� 

4
3 G��0�t, x, y�

� � �
0

�

	�v�pa�v� dv �
0

t

exp��	�v��t � ����0��, x, y� d��
	1�t, x, y� 
 �P�t, x, y� �

2
3 G��0�t, x, y�

� � �
0

�

	�v�pa�v� dv �
0

t

exp��	�v��t � ����0��, x, y� d��
(28)

With reference to the static Kirchhoff hypothesis, we
set

	1�t, x, y� 
 0 (29)

It follows from eqs. (28) and (29) that the only nonzero
component of the stress tensor, the longitudinal stress
	0, is given by

	0�t, x, y� 
 2G��0�t, x, y� � � �
0

�

	�v�pa�v� dv

� �
0

t

exp��	�v��t � ����0��, x, y� d�� (30)

The bending moment M(t, x) is determined by the
standard formula

M�t, x� 
 �
S

	0�t, x, y�y dy dz (31)
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where S denotes the domain occupied by the cross
section of the beam. At plane bending of a slender
beam, the longitudinal strain �0 reads

�0�t, x, y� 
 �y
�2u
�x2 �t, x� (32)

where u(t, x) is the beam deflection at time t � 0 at
point x � [0, l]. Substitution of eqs. (30) and (32) into
eq. (31) implies that

M�t, x� 
 2GJ��2u
�x2 �t, x� � � �

0

�

	�v�pa�v� dv

� �
0

t

exp��	�v��t � ���
�2u
�x2 ��, x� d�� (33)

where

J 
 �
S

y2 dy dz

stands for moment of inertia of the cross section.
Equating the bending moment M to the moment of the
external force F, we arrive at the integrodifferential
equation

�2u
�x2 �t, x� � � �

0

�

	�v�pa�v� dv �
0

t

exp��	�v��t � ���

�
�2u
�x2 ��, x� d� 


F�t�
2GJ �l � x� (34)

The boundary conditions at the clamped end of the
beam x � 0 are given by

u�t, 0� 
 0,
�u
�x �t, 0� 
 0 (35)

Integration of eq. (34) with boundary conditions (35)
results in

u�t, x� � � �
0

�

	�v�pa�v� dv �
0

t

exp��	�v��t � ���

� u��, x� d� 

F�t�
12GJ x2�3l � x� (36)

Equation (36) determines the deflection of a cantilever
beam at an arbitrary point x. Setting x � l in eq. (36),
we obtain

u�t, l� � � �
0

�

	�v�pa�v� dv �
0

t

exp��	�v��t � ���

� u��, l� d� 

F�t�l3

2EJ

where

E 
 3G (37)

is an analog of the Young’s modulus. Finally, intro-
ducing the strain �(t) � u(t, l )/l and the stress 	(t)
� F(t)l2/(2J), we find that

��t� � � �
0

�

	�v�pa�v� dv �
0

t

exp��	�v��t � ������� d�



	�t�
E (38)

Equation (38) is similar to constitutive eq. (17), where
pressure P is dropped, and the stress tensor 	̂ and the
strain tensor �̂ are replaced by 	 and �, respectively.

Formula (38) provides the stress–strain relation for
an arbitrary loading program. In what follows, we
concentrate on a standard creep test with

	�t� 
 � 0, t � 0
	0, t � 0

Substitution of this expression into eq. (38) implies
that

��t� 
 �0 
 � �
0

�

Z�t, v�pa�v� dv (39)

where �0 � 	0/E is the strain at the beginning of the
creep process, and

Z�t, v� 
 	�v� �
0

t

exp��	�v��t � ������� d�

Differentiating this equality with respect to time, we
find that the function Z(t, v) is governed by the differ-
ential equation

�Z
�t �t, v� 
 	�v�
��t� � Z�t, v��, Z�0, v� 
 0 (40)

Equations (39) and (40) will be employed later to
match observations in bending creep tests.
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FITTING OBSERVATIONS IN RELAXATION
TESTS

The aim of this section is to find adjustable parameters
G, �, V, 
, and � in the governing equations (2), (6),
and (24)–(26) by fitting the experimental data in tor-
sion relaxation tests depicted in Figures 3–5. Each
relaxation curve is approximated separately. To find
the quantities �, V, and 
, we fix some intervals [0,
�max], [0, Vmax], and [0, 
max], where the best fit pa-
rameters �, V, and 
 are assumed to be located, and
divide these intervals into J subintervals by the points
�(i) � i��, V( j) � j�V, and 
(k) � k�
 (i, j, k � 1, . . . , J
� 1) with �� � �max/J, �V � Vmax/J, and �

� 
max/J. For any pair {V( j), 
(k)}, the coefficient p0 in
eq. (6) is found from condition (7), where the integral
is calculated numerically by Simpson’s method with
300 points and the step �v � 0.1. For any triad {�(i),
V( j), 
(k)}, the integral in eq. (24) is evaluated numeri-
cally. The coefficients 	0 and 	1 are determined by the
least-squares technique from the condition of mini-
mum of the function

R 
 �
tm


	exp�tm� � 	num�tm��2

where the sum is calculated over all times tm at which
observations are depicted in Figures 3–5, 	exp is the
stress measured in a relaxation test, and 	num is given
by eqs. (24). The parameters �, V, and 
 are deter-
mined from the condition of minimum of the function
R on the set {�(i), V( j), 
(k) (i, j, k � 1, . . . , J � 1)}. After
finding the best fit values �(i), V( j), and 
(k), this pro-
cedure is repeated twice for the new intervals [�(i�1),
�(i�1)], [V( j�1), V( j�1)], and [
(k�1), 
(k�1)], to ensure an
acceptable accuracy of fitting. When the best fit values

of �, V, and 
 are found, the material constants G and
� are calculated by formulas (25) and (26). Figures 3–5
demonstrate excellent agreement between the obser-
vations in relaxation tests and the results of numerical
simulation.

The modulus G is plotted versus temperature T in
Figure 6. The experimental data are approximated by
the phenomenological relation

G 
 G0 
 G1exp��
T
T0
� (41)

where T0 is some characteristic temperature. Given T0,
the coefficients Gm (m � 0, 1) in eq. (41) are found by
the least-squares method. The temperature T0 is de-
termined by the steepest-descent algorithm. Figure 6
shows that eq. (41) provides good quality of matching
the experimental data.

The attempt rate � is plotted versus the absolute
temperature T in Figure 7. To approximate the obser-
vations, we employ the Arrhenius equation

� 
 �0exp��
�H
RT� (42)

where R is the universal gas constant, �H is an acti-
vation energy, and �0 is the attempt rate at high tem-
peratures (T3 �). To match the experimental data, it
is convenient to rewrite eq. (42) in the form

ln � 
 g0 �
g1

T (43)

with

Figure 6 The modulus G versus temperature T. Symbols:
treatment of observations in relaxation tests on iPP (unfilled
circles), LDPE (filled circles), and LLDPE (asterisks). Solid
lines: approximation of the experimental data by eq. (41).
Curve 1: G0 � 32.30, G1 � 799.42, T0 � 36.6. Curve 2: G0
� �1.59, G1 � 764.92, T0 � 36.5. Curve 3: G0 � �11.54, G1
� 496.47, T0 � 34.0.

Figure 7 The attempt rate � versus temperature T. Sym-
bols: treatment of observations in relaxation tests on iPP
(unfilled circles), LDPE (filled circles), and LLDPE (aster-
isks). Solid lines: approximation of the experimental data by
eq. (43). Curve 1: �0 � 16.97, �1 � 4.72 � 103. Curve 2: �0
� 29.15, �1 � 9.02 � 103. Curve 3: �0 � 16.49, �1 � 4.26 � 103.
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g0 
 ln �0, g1 

�H
R (44)

The coefficients gm (m � 0, 1) in eq. (43) are found by
the least-squares technique. Figure 7 demonstrates
that eq. (43) correctly describes the observations for
three semicrystalline polymers (the only exception is
the experimental points for LDPE at low temperatures
T � 30 and 40°C). After determining the best fit ad-
justable parameters gm, the activation energy �H is
calculated according to eq. (44). The values of �H are
collected in Table II.

The dimensionless average activation energy for re-
arrangement of strands V and the dimensionless stan-
dard deviation of activation energies 
 are plotted
versus temperature T in Figures 8 and 9. The experi-
mental data are approximated by the linear dependen-
cies

V 
 V0 
 V1T, 
 
 
0 
 
1T (45)

where the coefficients Vm and 
m (m � 0, 1) are deter-
mined by the least-squares algorithm. These figures
reveal that eqs. (45) adequately describe the effect of

temperature on the adjustable parameters V and 
 for
all three polyolefins.

The concentration of active MRs � is plotted versus
temperature T in Figure 10. The experimental data are
matched by the linear function

� 
 �0 
 �1T (46)

where the coefficients �m (m � 0, 1) are found by the
least-squares method. According to Figure 10, eq. (46)
correctly predicts changes in the concentration of ac-
tive mesodomains with temperature.

DISCUSSION

Figure 6 shows that the modulus G monotonically
decreases with temperature T. For all polymers under

TABLE II
Activation Energies �H of Semicrystalline Polymers

Polymer �H (kcal/mol) Literature data Source

iPP 9.5 7.3 [54]
9.2 [55]

LDPE 17.9 12.7 [56]
13.5 [57]
25.0 [58]

LLDPE 8.5 7.3 [57]
7.8 [56]

Figure 8 The average activation energy V versus temper-
ature T. Symbols: treatment of observations in relaxation
tests on iPP (unfilled circles), LDPE (filled circles), and LL-
DPE (asterisks). Solid lines: approximation of the experi-
mental data by eqs. (45). Curve 1: V0 � 6.23, V1 � 3.55
� 10�2. Curve 2: V0 � 6.51, V1 � 3.82 � 10�2. Curve 3: V0
� 6.11, V1 � 2.28 � 10�2.

Figure 9 The standard deviation of activation energies 

versus temperature T. Symbols: treatment of observations in
relaxation tests on iPP (unfilled circles), LDPE (filled circles),
and LLDPE (asterisks). Solid lines: approximation of the
experimental data by eqs. (45). Curve 1: 
0 � 5.94, 
1
� �3.48 � 10�2. Curve 2: 
0 � 1.63, 
1 � 9.40 � 10�3. Curve
3: 
0 � 2.81, 
1 � 4.83 � 10�3.

Figure 10 The concentration of active MRs � versus tem-
perature T. Symbols: treatment of observations in relaxation
tests on iPP (unfilled circles), LDPE (filled circles), and LL-
DPE (asterisks). Solid lines: approximation of the experi-
mental data by eq. (46). Curve 1: �0 � 0.87, �1 � �3.04
� 10�3. Curve 2: �0 � 0.20, �1 � 1.95 � 10�3. Curve 3: �0
� 0.74, �1 � �3.38 � 10�3.
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consideration, the reduction in the elastic modulus is
correctly approximated by the exponential depen-
dence (41). Given a temperature T, the modulus of iPP
exceeds that for LLDPE, whereas the latter is higher
than the modulus of LDPE. The fact that the modulus
of LLDPE exceeds that of LDPE is in agreement with
the DSC data reported in Table I, which demonstrate
that the degree of crystallinity of LLDPE is higher than
that of LDPE by a factor of 1.8. The latter implies that
the modulus of LLDPE should exceed that of LDPE,
because the rigidity of crystallites is substantially
higher than that of amorphous rubbery regions.

The elastic moduli of polyethylenes vanish in the
interval of temperatures between 110 and 140°C, that
is, in the close vicinity of the melting temperatures Tm

of these polymers. Based on this result, we can present
eq. (41) in the form

G 
 G*�exp�Tm � T
T0

� � 1�
with only two material constants G* and T0.

The characteristic temperature T0 that describes the
decrease in G with temperature is practically indepen-
dent of the crystalline morphology and the degree of
branching of chains (for all polymers, T0 lies in the
interval between 34 and 37°C). The ratio

� 

G1

G0 
 G1

that characterizes the rate of reduction in the modulus
with temperature, is also practically independent of
the chemical structure of polymers (� � 0.96 for iPP, �
� 1.00 for LDPE, and � � 1.02 for LLDPE).

To validate our findings, we compare the modulus
of iPP at room temperature (T � 20°C) given by eq.
(41) with that provided by the supplier. The difference
between the calculated value G � 0.495 GPa and that
determined in terms of the flexural modulus reported
by the supplier and recalculated with the help of eq.
(37) G � 0.529 GPa does not exceed 6%.

Appropriate deviations for LDPE (25.8%) and LL-
DPE (33.9%) are noticeably higher, but we use secant
moduli indicated by the suppliers instead of the
Young’s moduli that are unavailable. To confirm that
this explanation for the discrepancies is reasonable,
we compare the elastic modulus of LDPE found in the
present paper with that determined in uniaxial tensile
tests with various strain rates in our recent study.59

The shear modulus corresponding to the strain rate 1.0
s�1 determined in that work (based on another con-
stitutive model that accounts for the viscoplastic be-
havior of a semicrystalline polymer and neglects rear-
rangement of strands in an equivalent network) equals
41.18 MPa, which is extremely close to the value G

� 42.6 MPa found in the present paper (the difference
is less than 4%).

Figure 7 demonstrates that the attempt rate � mono-
tonically increases with temperature T for all poly-
mers under consideration. The growth of the attempt
rate is correctly described by the Arrhenius depen-
dence (43), which confirms our assumption that rear-
rangement of strands in an equivalent network is ther-
mally activated. According to Table II, the activation
energies �H found by matching our experimental data
are in good agreement with those reported by other
researchers.

Figure 8 reveals that the average activation energies
V of three semicrystalline polymers slightly increases
with temperature. The rate of this growth is practically
independent of the crystalline morphology of the
polymers: the coefficient V1 in eqs. (45) equals 3.6
� 10�2 for iPP, 3.8 � 10�2 for LDPE, and 2.38 � 10�2

for LLDPE. Given a temperature T, the highest value
of V is found for LDPE, and the lowest value of V is
found for LLDPE.

The increase in the activation energy with temper-
ature may be attributed to reconstruction of crystal-
lites and smectic mesophase under heating. Some tie
chains that bridge lamellar blocks in the stacks at room
temperature are broken with an increase in T, and the
detached blocks diffuse into the amorphous phase,
where they serve as extra crosslinks with high activa-
tion energies.

It follows from Figure 9 that the crystalline mor-
phology of iPP changes with temperature in a differ-
ent way than the morphology of polyethylenes. The
standard deviation of activation energies 
 (which
may be treated as a measure of heterogeneity of an
equivalent network of strands) strongly decreases
with temperature for iPP and increases for LDPE and
LLDPE. This difference may be explained by partial
reconstruction of smectic mesophase in iPP under
heating. This transformation reduces the difference
between the activation energies of strands belonging
to mesoregions located in the bulk amorphous phase
and in the close vicinities of crystallites. As a result,
the level of spatial heterogeneity of the network is
diminished, which is reflected by the model as a de-
crease in 
 with temperature.

On the contrary, heating of LDPE and LLDPE (es-
pecially in the submelting region) causes melting of
lamellae. Partial melting of crystallites induces sepa-
ration of lamellar blocks from their stacks. The sepa-
rated blocks move into the amorphous phase where
they serve as extra physical crosslinks. As the activa-
tion energies for detachment of tie chains from the
surfaces of these blocks differ substantially from the
activation energies for rearrangement of chains in the
amorphous phase, the spatial inhomogeneity of the
network grows, which is observed as an increase in 

with T. The coefficient 
1 in eqs. (45) that characterizes
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the increase in the standard deviation of activation
energies with temperature is larger (by about twice)
for LDPE (
1 � 9.4 � 10�3) than for LLDPE (
1 � 4.8
� 10�3). This conclusion seems quite natural, because
lamellar stacks in LDPE are less rigid compared to
LLDPE (due to the presence of long-chain branches).
The latter is confirmed by Raman spectroscopy, see
Figure 6 in [6].

Figure 10 demonstrates that the concentration of
active mesoregions � increases with temperature for
LDPE and decreases for iPP and LLDPE. An increase
in � of LDPE with temperature appears natural (in
particular, in the submelting region of temperatures),
and it may be ascribed to release of the rigid amor-
phous fraction (chains in the amorphous regions
whose mobility is restricted by surrounding crystal-
lites) driven by partial melting of crystallites.

The observed reduction in the concentration of ac-
tive amorphous regions in iPP with temperature may
be attributed to rearrangement (partial recrystalliza-
tion) of smectic mesophase (interfacial and mobile
crystalline phases according to the classification pro-
posed in [60]) in the close neighborhoods of lamellar
blocks, which results in immobilization of chains in
amorphous regions surrounded by radial and trans-
verse lamellae.

A similar explanation may be proposed for the de-
crease in � with temperature found for LLDPE: a
pronounced decrease in the mass fraction of the inter-
facial phase and mobile crystalline phase due to their
rearrangement that induces immobilization of chains
in surrounding amorphous regions. Our hypothesis is
confirmed by comparison of the experimental data for
LLDPE depicted in Figure 10 with the observations
reported in Figure 3 of ref. [60]. According to Figure
10, the concentration of active mesodomains at room
temperature � � 0.63, which corresponds to the total
content of rubbery, interfacial and mobile crystalline
phases determined in [60]. At the temperature T
� 100°C, the concentration of active MRs decreases to
� � 0.30, which roughly corresponds to the mass
fraction of the rubbery phase reported in [60]. The
latter means that polymer chains in the interfacial and
mobile crystalline domains that are active at room
temperature become immobilized with the growth of
T due to partial recrystallization of smectic me-
sophase.

The same phenomenon (partial immobilization of
chains in the rubbery domains) should also take place
in LDPE. It is, however, noticeably less pronounced in
LDPE compared with LLDPE, where the distribution
of crystal sizes is substantially more heterogeneous
due to a wide distribution of side groups along and
across polymer chains [6].

It is worth noting that the rates of decrease in � with
temperature for iPP and LLDPE specimens practically
coincide: the coefficient �1 in eq. (46) equals �3.0

� 10�3 for iPP and �3.4 � 10�3 for LLDPE. We treat,
however, this similarity as coincidental, due to the
substantial difference in crystalline morphologies of
these polymers.

VALIDATION OF THE MODEL

It has been demonstrated by matching the relaxation
curves that (1) the constitutive equations correctly de-
scribe the experimental data in relaxation tests, and (2)
the adjustable parameters found by fitting the obser-
vations change with temperature in a physically plau-
sible way. The question arises, however, whether the
model can adequately predict observations in me-
chanical tests.

To validate the stress–strain relations, a series of six
creep tests was performed on injection-molded iPP
specimens at the temperatures T � 30, 40, 60, 80, 100,
and 120°C. The tests were carried out on the dynamic
mechanical analyzer DMTA V (Rheometric Scientific
Co.) in the cantilever bending mode. To avoid the
effect of physical aging, mechanical tests were per-
formed a few days after preparation of samples.

In each creep test, a specimen was equilibrated at a
given temperature T (for 10 min). Afterwards, the
specimen was loaded up to a given stress 	 � 1.0 MPa
(within 15 s). The stress remained constant during the
creep time tc � 40 min, and the strain was measured
by using a standard extensometer. At each tempera-
ture, at least two creep tests were conducted on dif-
ferent samples.

The strain � is plotted versus the logarithm of time
t in Figure 11 (the initial instant t � 0 corresponds to
the beginning of the creep process). This figure dem-
onstrates that the increase in strain is rather modest at
relatively low temperatures (30 and 40°C), but it be-
comes more pronounced at higher temperatures.

Figure 11 The strain � versus time t. Circles: experimental
data on iPP in tensile creep tests at the temperatures T � 30,
40, 60, 80, 100, and 120°C from bottom to top, respectively.
Solid lines: predictions of the model.

SEMICRYSTALLINE POLYMER VISCOELASTIC RESPONSE 21



Each creep curve in Figure 11 is approximated sep-
arately by using the quantities V, 
, and � found by
matching the experimental data depicted in Figure 3.
The coefficient p0 in eq. (6) is found from condition (7),
where the integral is calculated numerically by Simp-
son’s method with 300 points and the step �v � 0.1.
The initial strain �0 equals the strain measured at the
beginning of a creep test. To ensure good fit of the
creep curves, we treat the attempt rate � as an adjust-
able parameter. To find this quantity, we fix an inter-
val [0, �max], where the best fit value of � is assumed
to be located, and divide this interval into J subinter-
vals by the points �(i) � i�� (i � 1, . . . , J � 1) with ��
� �max/J. For each �(i), the integral in eq. (38) is
evaluated by Simpson’s method with 300 points and
the step �v � 0.1. Differential equation (39) is solved
numerically by the Runge–Kutta method with the
time-step �t � 0.03 s. The attempt rate � is determined
from the condition of minimum of the function

R 
 �
tm


�exp�tm� � �num�tm��2

on the set {�(i) (i � 1, . . . , J � 1)}. The sum is calculated
over all times tm at which observations are reported in
Figure 11; �exp is the strain measured in a creep test,
and �num is given by eq. (38). After finding the best fit
value �(i), this procedure is repeated twice for the new
intervals [�(i�1), �(i�1)], to provide an acceptable accu-
racy of fitting.

Figure 11 demonstrates excellent agreement be-
tween the observations in creep tests and the results of
numerical simulation at all temperatures, but T
� 80°C, at which some deviations are observed be-
tween the experimental data and the numerical re-
sults.

The attempt rate � is plotted versus temperature T
in Figure 12. The experimental data are approximated

by the Arrhenius eq. (43), where the coefficients gm (m
� 0, 1) are found by the least-squares technique. Fig-
ure 12 shows that eq. (43) correctly fits the observa-
tions. The activation energies �H determined by
matching creep and relaxation curves are extremely
close to one another: �H � 9.19 kcal/mol for creep
tests, and �H � 9.37 kcal/mol for relaxation tests (the
difference is less than 2%). At all temperatures under
consideration, the attempt rate determined in the ap-
proximation of creep curves slightly exceeds that
found by fitting relaxation curves. However, we treat
the difference between curves 1 and 2 in Figure 12 as
insignificant, because it is less than the scatter of ex-
perimental data around the curves. Based on this find-
ing, we conclude that the constitutive equations can
correctly predict observations in creep tests, when the
material constants are found by matching experimen-
tal data in relaxation tests.

CONCLUSION

Three series of torsional relaxation tests were per-
formed on injection-molded iPP, LDPE, and LLDPE in
the range of temperatures from room temperature to T
� 120°C.

A constitutive model was derived for the viscoelas-
tic response of semicrystalline polymers at small
strains. A polymer is treated as an equivalent transient
network of strands bridged by temporary junctions.
Active strands separate from their junctions at random
instants as they are activated by thermal fluctuations.
Dangling strands merge with nearby junctions at ran-
dom times. The equivalent network is treated as an
ensemble of mesoregions with various activation en-
ergies for rearrangement of strands.

Constitutive equations are derived by using the
laws of thermodynamics. The stress–strain relations
involve five adjustable parameters that are found by
fitting the experimental data. Good agreement is dem-
onstrated between the observations in relaxation tests
and the results of numerical simulation. It is also
revealed that the governing equations can correctly
predict experimental data in bending creep tests on
iPP, when the material constants are determined by
fitting data in torsional relaxation tests.

The following conclusions are drawn:

1. The elastic modulus G monotonically decreases
with temperature following the exponential law
(41). The characteristic temperature T0 for the decay
in the modulus with temperature is independent of
the crystalline morphology of the polymers.

2. The attempt rate for rearrangement of strands �
increases with temperature T following the Ar-
rhenius dependence (42). The activation energies
�H found by matching relaxation curves are
close to those determined by other researchers.

Figure 12 The attempt rate � versus temperature T. Sym-
bols: treatment of observations in relaxation (unfilled circles)
and creep (filled circles) tests on iPP. Solid lines: approxi-
mation of the experimental data by eq. (43). Curve 1: �0
� 16.97, �1 � 4.72 � 103. Curve 2: �0 � 16.93, �1 � 4.62 � 103.
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3. The average activation energy V slightly increases
with temperature in accord with linear eq. (45). The
rate of increase in V is practically independent of
the crystalline structure of polyolefins.

4. The standard deviation of activation energies 

and the concentration of active mesoregions � are
strongly affected by the crystalline morphology.

5. The parameter 
 decreases with temperature for
iPP and increases with T for polyethylenes. The
decrease in 
 with temperature is explained by
partial reconstruction of smectic mesophase under
heating, which results in homogenization of the
ensemble of MRs. The increase in 
 with T is as-
cribed to detachment of lamellar blocks from their
stacks and their diffusion into the amorphous
phase, where the separated blocks serve as extra
physical crosslinks with high activation energies.

6. The concentration of active mesodomains � in-
creases with temperature for LDPE and de-
creases for iPP and LLDPE. The observed growth
of � is attributed to the release of the rigid amor-
phous fraction driven by partial melting of crys-
tallites. The decrease in � with temperature is
associated with rearrangement of the interfacial
and mobile crystalline domains, which results in
immobilization of chains in smectic mesophase.

This work was partially supported by the West Virginia
Research Challenge Grant Program.
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